The first enantioselective total synthesis of cyclomyltaylane-5 $\alpha-0$ l and determination of its absolute stereochemistry

Hisahiro Hagiwara, ${ }^{* a}$ Hitoshi Sakai, ${ }^{a}$ Takashi Uchiyama, ${ }^{,}$Yoshiaki Ito, ${ }^{b}$ Noriyuki Morita, ${ }^{b}$ Takashi Hoshi, ${ }^{b}$ Toshio Suzuki ${ }^{b}$ and Masayoshi Ando ${ }^{b}$
${ }^{a}$ Graduate School of Science and Technology, Niigata University, 8050, 2-nocho, Ikarashi, Niigata 950-2181, Japan
${ }^{\text {b }}$ Faculty of Engineering, Niigata University, 8050, 2-nocho, Ikarashi, Niigata 950-2181, Japan
Received (in Cambridge, UK) 19th December 2001, Accepted 16th January 2002
First published as an Advance Article on the web 5th February 2002

The tetracyclic sesquiterpenoid (+)-cyclomyltaylan- 5α-ol $\mathbf{1}$ has been synthesized starting from $(S)-(+)$-Hajos-Wiechert ketone analogue $\mathbf{1 0}$ via stereoselective Claisen rearrangement followed by SmI_{2}-promoted reductive cyclisation. Thus, the absolute configuration has been established to be $2 R, 3 R, 4 R, 5 S, 6 R, 7 R$ (cyclomyltaylane numbering) as depicted in structure $\mathbf{1}$.

Natural products having diverse structures and important biological activities have been found from various natural sources by the efforts of many research groups. ${ }^{1}$ Particularly, liverworts contain structurally as well as physiologically interesting organic molecules. Among them are cyclomyltaylane ${ }^{2}$ and myltaylane ${ }^{3}$ sesquiterpenoids which have unique tetracyclic and tricyclic carbon frameworks respectively. Since the isolation of cyclomyltaylenol ${ }^{2 a}$ (cyclomyltaylan-15-ol) 2 as the first cyclomyltaylane natural product from the Japanese Mylia taylorii (Hook.) S. Gray by Matsuo et al., cyclomyltaylan-3-ol ${ }^{2 b}$ 3 along with cyclomyltaylyl 10α-caffeate ${ }^{2 b} 4$ from the Japanese Bazzania japonica have been isolated by Asakawa et al. and subsequently cyclomyltaylane ${ }^{2 c} 5$ and (+)-cyclomyltaylan$5 \alpha-\mathrm{ol}^{2 d} 1$ from the Taiwanese Bazzania tridens and Reboulia hemisphaerica by Wu et al. Their tricyclic congeners, (-) myltaylenol [myltayl-4(12)-en-15-ol] ${ }^{3 a} 6$ and (-)-myltayl-4(12)-en-5-ol ${ }^{3 b} 7$, were also isolated by Matsuo et al. and Asakawa et al. from the Mylia taylorii and the French Bazzania trilobata respectively (Fig. 1).

$1 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}$
$2 \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
$3 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$4 R_{2}=R_{3}=H$,
$5 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

$6 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
$7 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
tetracyclo[6.2.1.0 $\left.0^{1,6} .0^{7,9}\right]$ undecane ring with three contiguous quaternary carbon centers and an absence of successful total synthesis of cyclomyltaylane-type sesquiterpenoids, we set out on a synthetic study of cyclomyltaylane-5 α-ol 1 and delineate herein the first enantioselective total synthesis of 1 thereby establishing its absolute stereochemistry. ${ }^{4}$

Results and discussion

Our retrosynthetic design is illustrated briefly in Scheme 1. Final

ring closure to the cyclopropane ring of $\mathbf{1}$ could be accomplished by an intramolecular substitution of ketone $\mathbf{8}$ which could be derived by intramolecular reductive cyclisation of formyl-enone $9(\mathrm{R}=\mathrm{O})$. The enone 9 in turn could be obtained by stereoselective introduction of an allyl unit at the angular position of the Hajos-Wiechert ketone analogue $\mathbf{1 0}$.
Though the absolute stereochemistry of the natural product 1 was unknown, we employed the optically active $(S)-(+)$ -Hajos-Wiechert ketone analogue $\mathbf{1 0}^{5}$ as a starting material which was prepared by amino acid mediated asymmetric intramolecular cyclisation of 2-methyl-2-(3-oxopentyl)cyclo-pentane-1,3-dione 11 (Scheme 2). The reaction conditions for cyclisation have already been developed by us in the

Though biological activities of these sesquiterpenoids are underdeveloped, cyclomyltaylyl 3 -caffeate 4 inhibited release of the superoxide anion from guinea-pig peritoneal macrophage induced by $\mathrm{O}_{2}{ }^{-}$stimulant FMLP (formyl-methionyl-leucylphenylalanine; $\left.10^{-7} \mathrm{M}\right)$ at $\mathrm{ID}_{50} 7.5 \mu \mathrm{~g} \mathrm{ml}{ }^{-1} .{ }^{2 b}$ The relative stereochemistries of every cyclomyltaylane natural product have been determined by using modern NMR techniques, the absolute configurations have not been established yet except for compound $\mathbf{3}$ which was determined by the empirical CD octant rule Intrigued by its novel carbon framework containing tetramethyl-

Scheme 2 Reagent, conditions and yields; i, l- β-phenylalanine, D-CSA, MeCN, $30-70{ }^{\circ} \mathrm{C}, 5$ days, $99 \%\left(45 \%\right.$ after recrystallizations); ii, NaBH_{4}, $\mathrm{MeOH},-25^{\circ} \mathrm{C}, 100 \%$, iii, TBDMSCl, imidazole, DMAP, DMF, r.t., 98%; iv, p - $\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCl}$, DMAP, pyridine, r.t., 99%; v, MeI, t - BuOK , t - BuOH , reflux, 65%; vi, LAH, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 98 \%$; vii, n - $\mathrm{BuLi}, \mathrm{CS}_{2}$, MeI, THF, $0^{\circ} \mathrm{C}$; viii, n - $\mathrm{Bu}_{3} \mathrm{SnH}$, AlBN, toluene, reflux, 8 min, 92% in two steps; ix, $\mathrm{BH}_{3} \cdot \mathrm{THF}$, THF, r.t., 2.5 h , then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, r.t., overnight, 84%; x, PCC, $4 \AA$ AS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 9 h, 98% from 19, 89% from 20; xi, DBU , t - BuOH , reflux, overnight, 90% from 21, 88% from 22; xii, KH , allyl bromide, THF, $0{ }^{\circ} \mathrm{C} 2 \mathrm{~h}$, r.t. $2 \mathrm{~h}, 45-50{ }^{\circ} \mathrm{C} 5 \mathrm{~h}$, toluene, reflux $12 \mathrm{~h}, 96 \%$; xiii, $\mathrm{OsO}_{4}, \mathrm{NalO}_{4}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$, r.t., $3 \mathrm{~h}, 81 \%$.
preparation of optically active Wieland-Miescher ketone analogue ${ }^{6}$ and successfully employed for the total syntheses of several terpenoids. ${ }^{7}$ Thus treatment of $\mathbf{1 1}$ with L-phenylalanine and (+)-camphorsulfonic acid by gradual warming to $80^{\circ} \mathrm{C}$ afforded $(+)$-enedione $10\left([a]_{\mathrm{D}}+297\right)$ as crystals in 45% yield after recrystallisation. The enantiomeric excess of $\mathbf{1 0}$ was obtained by GLC analysis on a chiral stationary phase (column: cyclodextrine- $\beta-236 \mathrm{M}-19$) to be more than 98% ee. The absolute configuration of $\mathbf{1 0}$ was determined by applying the exciton chirality method as follows. The carbonyl group at C-1 in $\mathbf{1 0}$ was regio- and stereoselectively reduced with 0.26 equiv. of sodium borohydride in absolute EtOH at $-20^{\circ} \mathrm{C}$ to give quantitatively β-alcohol $\mathbf{1 2}$ as a sole product which was then treated with p-bromobenzoyl chloride in pyridine in the presence of DMAP to afford p-bromobenzoate 14 in 99% yield (Scheme 2).

The CD spectrum of the benzoate $\mathbf{1 4}$ showed an exciton type of positive first ($\Delta \varepsilon+21.9$ at 255 nm) and a negative second ($\Delta \varepsilon-37.4$ at 203 nm) Cotton effect. This result clearly indicated that the chirality between the two long axes of transition moments of enone and benzoate chromophores was positive as shown in Fig. 2. ${ }^{8}$

Thus, the absolute stereochemistry of the (+)-enedione $\mathbf{1 0}$ was unambiguously established as (7 aS). Prior to the trans-

Fig. 2
formation of the cyclohexenone ring, the β-alcohol in $\mathbf{1 2}$ was protected with TBDMSCl to afford TBDMS ether 13. Methylation with excess iodomethane (MeI) in the presence of t - BuOK in t-BuOH at reflux temperature ${ }^{9}$ provided deconjugated ketone $\mathbf{1 5}$ in 65% yield along with the recovered 13 (11%) and a small amount of tetramethylindanone. Lithium aluminium hydride (LAH) reduction of $\mathbf{1 5}$ afforded β-alcohol $\mathbf{1 6}$ as a sole product in 98% yield. The stereochemistry of the resulting hydroxy group of $\mathbf{1 6}$ was determined to be β-equatorial orientation judging from coupling constants (9.2 and 7.4 Hz) of a proton at C_{5}.

The hydroxy group of the alcohol $\mathbf{1 6}$ was removed by Barton's radical protocol. ${ }^{10}$ Treatment of the alcohol 16 with n-BuLi followed by successive addition of carbon disulfide and MeI afforded xanthate 17 . Then the xanthate $\mathbf{1 7}$ was subjected to reaction with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of a catalytic amount of AIBN in toluene at reflux for 8 min to give olefin $\mathbf{1 8}$ in 92% yield from 16. In order to arrange the cyclopentenone moiety, hydroboration of the olefin $\mathbf{1 8}$ was carried out to provide regioselectively β-19 and α-alcohol 20 in 84% yield $1: 1.9$ ratio in favour of the latter indicating that the α-face of $\mathbf{1 8}$ was less sterically crowded. Independent PCC oxidation of 19 and 20 in the presence of molecular sieves powder afforded ketone 21 and 22 in 98 and 89% yield respectively. A slower rate of oxidation of 19 compared with 20 implies that the hydroxy group of 19 is sterically more hindered. Treatment of the ketones 21 and 22 with DBU in $t-\mathrm{BuOH}$ lead to the same cyclopentenone 24 in 90% and 88% yield, respectively. In benzene, the β-elimination required a longer reaction time and resulted in a lower yield. Concomitant facile isomerisation occurred from enone $\mathbf{2 3}$ to thermodynamically more stable $\mathbf{2 4}$ (Fig. 3), though the stereochemistry of $\mathbf{2 4}$ could not be assigned by NMR techniques. Deducing from the cis-stereochemistries of related compounds 28 and 29 determined by NOE (Fig. 4) and calculated heat of formation of $23\left(-41.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and

Fig. 3

28

29

Fig. 4 Selected NOE of related compounds.
$24\left(-49.2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ by PM3 method, the enone $\mathbf{2 4}$ might have cis-stereochemistry as depicted in the structure $\mathbf{2 4}$.

Introduction of the allyl unit was at first investigated by using enone 29. $\mathrm{D}_{2} \mathrm{O}$ quenching of the enolate of 29 generated by LDA at $-78{ }^{\circ} \mathrm{C}$ incorporated deuterium in 93% yield at the angular position. However, attempts of angular allylation of the enolate of $\mathbf{2 9}$ generated by LDA with allyl bromide in the presence of HMPA resulted in complete recovery of 29, probably due to steric hindrance imposed by bis-neopentyl position. On the other hand, treatment of the enone $\mathbf{2 4}$ with potassium hydride and allyl bromide furnished unstable O-allylated dienol ether 25. After addition of toluene, the resulting solution was heated at reflux and the desired allylenone 26 was furnished by Claisen rearrangement as a single isomer in 96% yield in one pot operation. Unfortunately, the stereochemistry of $\mathbf{2 6}$ could not be determined by spectroscopic means. The stereoselective introduction of the allyl group from the β-face of the enone 24 was finally proved by transformation of 26 into the natural product 1. Present stereoselective introduction of the allyl unit at angular position is explained by the fact that the Claisen rearrangement proceeded from the less sterically congested conformer 25B by assuming a chair like transition state (Fig. 5).

Fig. 5
Then, construction of the tricyclo[5.2.2.0 $\left.0^{1,6}\right]$ undecane framework was investigated by intramolecular reductive cyclisation of formyl enone 27 (Scheme 3). Recently, efficiency of reductive cyclisation of alkyl or ketyl radical species generated by samarium(II) iodide $\left(\mathrm{SmI}_{2}\right)$ is well precedented. ${ }^{11}$ Enholm et al. and other groups have reported SmI_{2}-mediated intramolecular reductive cyclisation of carbonyl groups with olefin or electrondeficient olefins ${ }^{11,12}$ though these reactions proceeded only in exo-trig mode. We anticipated that such methodology would be applicable for our purpose, though a successful cyclisation between the cyclic enone moiety and formyl group has not been well precedented. To this end, the allyl group of olefin 26 was oxidatively cleaved with a catalytic amount of OsO_{4} and excess NaIO_{4} in $t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ to furnish formylenone 27 in 81% yield.

According to the literature procedure, ${ }^{13} \mathrm{SmI}_{2}$ was prepared as a 0.1 M solution in THF from excess metallic Sm and 1,2 diiodoethane in THF at room temperature. Optimised reaction conditions were investigated by using formyl-enone 37 alternatively prepared [Equation (1)].

In an initial attempt, treatment of 37 with 3.0 equiv. of SmI_{2} gave the recovered aldehyde $37(29 \%)$ and the enone $29(18 \%)$

32
33a $\mathrm{R}=$ TBDMS, $\mathrm{R}^{\prime}=$ exo- Me b $\mathrm{R}=\mathrm{TBDMS}, \mathrm{R}^{\prime}=$ endo -Me
iv
34a R = H, R' = exo-Me
 b $\mathrm{R}=\mathrm{Ms}, \mathrm{R}^{\prime}=$ endo -Me

1

36

Scheme 3 Reagents conditions and yields; i, $\mathrm{Sml}_{2}, t-\mathrm{BuOH}, \mathrm{HMPA}$, $-78^{\circ} \mathrm{C}, 62 \%$; ii, TBDMSCl, DMAP, imidazole, DMF, r.t., overnight, 94%; iii, LiHMDS, MeI, THF, $0^{\circ} \mathrm{C}, 83 \%$ (mixture of $\mathbf{3 3 a}$ and $\mathbf{3 3 b}$); iv, TBAF, THF, r.t., 90% ($\mathbf{3 4 a}: \mathbf{3 4 b}=1: 2.3$); v, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 94 \%$ (from 34b), 76% (from 34a); vi, NaOEt , r.t., 93% (from $\mathbf{3 5 b}$), 77% (from 35a); vii, LAH, $0^{\circ} \mathrm{C}, 81 \%$.

after aqueous work up (Table 1, entry 1). With t - BuOH as a proton source and excess HMPA in order to enhance reducing ability of $\mathrm{SmI}_{2},{ }^{14}$ the reaction of $\mathbf{3 7}$ with 1.8 equiv. of SmI_{2} at room temperature for 0.5 h gave tricyclic hydroxyketone $\mathbf{4 0}$ and 41 in 5 and 18% yields respectively, along with the recovered aldehyde $37(11 \%)$ after aqueous work up (Table 1, entry 2). From the TLC inspection of the aqueous layer, it was not possible to extract products $\mathbf{4 0}$ and $\mathbf{4 1}$ completely from the resulting aqueous layer. Thus direct isolation was carried out by silica gel column chromatography after quenching the reaction by addition of silica gel in entries 3 to 5 . When the enone-aldehyde 37 was treated with SmI_{2} and t - BuOH in the presence of excess HMPA at $-78{ }^{\circ} \mathrm{C}$ for 10 min , hydroxyketone 40 and 41 were

Table 1

Entry	Substrate	Reagents	Conditions	Product and yield (\%)
1	37	Sml_{2} (3.0 equiv.)	r.t., 1.0 h	37, 29
				29, 18
2	37	Sml_{2} (1.8 equiv.)	r.t., 0.5 h	41, 18
		t - BuOH (1.2 equiv.)		40, 5
		HMPA		37, 11
$3{ }^{\text {a }}$	37	Sml_{2} (3.0 equiv.)	r.t., 13 h	41, 1
		t - BuOH (1.2 equiv.)		40, 12
				29, 44
4^{a}	37	Sml_{2} (3.0 equiv.)	$-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$	41, 52
		t-BuOH (1.2 equiv.)		40, 24
		HMPA		
5^{a}	27	Sml_{2} (3.0 equiv.)	$-78^{\circ} \mathrm{C}, 15 \mathrm{~min}$	
		t-BuOH (1.2 equiv.)		$\text { 31, } 19$
		HMPA		

${ }^{a}$ The products were isolated without aqueous work up.
obtained in 24 and 52% yield (Table 1, entry 4). In a similar manner, reaction of $\mathbf{2 7}$ provided the desired tricyclic product $\mathbf{3 0}$ and 31 in 43 and 19% yields respectively. The relative stereochemistry of the major hydroxyketone 41 was confirmed by NOE experiments as depicted in Fig. 6. In the minor hydroxy-

Fig. 6 Stereochemical assignments of pinacol products.
ketone 40, W-type long range coupling (1.2 Hz) between $\mathrm{C}_{2}-\mathrm{H}$ ($\delta 4.71$; dddd, $J 9.6,4.4,4.4$ and 1.2 Hz) and $\mathrm{C}_{4}-\mathrm{H}_{\text {exo }}(\delta 2.20 ;$ ddd, $J 18.8,4.4$ and 1.2 Hz) established the orientation of the hydroxy group to be endo (Fig. 6). In a similar manner, W-type long range coupling was observed in the hydroxyketone 31. The proton on a carbon with a hydroxy group in $\mathbf{3 0}$ appeared at a higher field ($\delta 4.04$) than the corresponding proton of 31 ($\delta 4.67$). These results also confirmed stereochemistries of the hydroxy groups of $\mathbf{3 0}$ and $\mathbf{3 1}$. When the reaction was run without HMPA, reductive elimination of acetaldehyde predominated to give the enone 29 as a major product (Table 1, entry 3).

Plausible reaction pathway drawn from these results is described in Scheme 4. Since the reduction potential of cyclohexenone is lower ($1.55 \mathrm{~V} v s$. SCE) than propionaldehyde (1.8 V vs. SCE), ${ }^{15}$ initially we anticipated that the reaction proceeded by chelation control through one-electron transfer to the cyclopentenone moiety followed by intramolecular trapping of the resulting radical by the formyl group in intermediate 42 (path b) to afford the endo-alcohol $\mathbf{3 1}$ or $\mathbf{4 0}$ as a major product. However, exo-hydroxyketone $\mathbf{3 0}$ or $\mathbf{4 1}$ was isolated as a major isomer with 3 equiv. of SmI_{2}. Judging from these results, the present reaction might proceed through the thermodynamically controlled 6-endo-trig mode vinylogous pinacol coupling pathway after two-electron transfer to 27 or 37 (path a). Steric interference between the two Sm atoms coordinated to the intermediary two alkoxy groups in the intermediate $\mathbf{3 8}$ equi-
librated into more stable intermediate 39 and provided exoalcohol 30 or 41 preferentially. In the absence of HMPA, the reaction became slow. An attempt at a higher reaction temperature resulted in reductive elimination of the acetaldehyde unit to give enone 29 (path c), , ${ }^{14 a, 16}$ During the course of our synthetic study, Tori and his co-workers also reported similar 6-endo-trig cyclisation of formylenone leading to hydrindanone. ${ }^{17}$

The final transformation to the natural product 1 to furnish the tetracyclic framework by intramolecular cyclisation was carried out as follows (Scheme 3). It was fortunate for our purpose that the exo-hydroxyketone $\mathbf{3 0}$ predominated by the reductive cyclisation. The hydroxyketone 30 was protected in 94% yield as the TBDMS ether 32 which was then methylated with LiHMDS and MeI in THF at $0{ }^{\circ} \mathrm{C}$ to afford 33 as a diastereomeric mixture. Without separation, subsequent deprotection of the TBDMS ether with TBAF provided alcohols 34a and 34b in a $1: 2.3$ ratio in 90% combined yield. These alcohols were separately subjected to conventional mesylation to yield mesylates 35a and 35b in 76 and 94% yield respectively. Intramolecular substitution of the mesylate 35a or 35b with $\mathrm{NaOEt}{ }^{18}$ provided cyclomyltaylan-5-one $\mathbf{3 6}$ in 77 or 93% yield respectively. Finally, stereoselective reduction of the ketone 36 with LAH furnished (+)-cyclomyltaylan-5 α-ol $1\left\{[\alpha]_{\mathrm{D}}^{20}+33\right.$ (c $0.3, \mathrm{CHCl}_{3}$)) in 81% yield. Spectral data of the synthetic $\mathbf{1}$ were completely identical with those of natural product $1\left\{[\alpha]_{\mathrm{D}}\right.$ $\left.+36\left(c 0.2, \mathrm{CHCl}_{3}\right)\right\}^{2 d}$ thereby establishing the absolute stereochemistry of the natural product 1 as depicted in structure 1 .

In conclusion, we have achieved an enantioselective first total synthesis of (+)-cyclomyltaylan-5 -ol 1 starting from the optically active $(S)-(+)$-Hajos-Wiechert ketone analogue 10 via stereoselective Claisen rearrangement followed by $\mathrm{SmI}_{2}-$ mediated reductive coupling as key steps. The absolute configuration of the natural product 1 was thus established to be $2 R, 3 R, 4 R, 5 S, 6 R, 7 R$ (cyclomyltaylane numbering) as shown in structure 1 in Fig. 1.

Experimental

Mps were determined with a Yanaco MP hot-stage apparatus and are uncorrected. IR spectra were recorded on a Shimadzu FT/IR-4200 spectrophotometer in carbon tetrachloride unless otherwise indicated. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were obtained for solutions in deuteriochloroform with Varian Gemini 200H (200 MHz) and Unity 500 plus (500 MHz) instruments with tetramethylsilane as internal standard. J-Values are in Hz. ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in deuteriochloroform with Varian Gemini $200 \mathrm{H}(50 \mathrm{MHz}$) and Unity 500plus (125 MHz) instruments. Mass spectral data were obtained with a Hitachi M-80B spectrometer. UV and CD spectra were obtained by a JASCO J-720W instrument. Specific rotations were measured with a Horiba SEPA-200 spectrophotometer for

Scheme 4
solutions in chloroform unless otherwise indicated and are given in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. Medium-pressure liquid chromatographies (MPLC) were carried out on a JASCO PRC-50 instrument with a silica gel packed column. Microanalyses were carried out in the Instrumental Analysis Center for Chemistry, Tohoku University.

(7aS)-(+)-4,7a-Dimethyl-2,3,7,7a-tetrahydro- $\mathbf{1 H}$-indene-1,5(6H)-dione 10

A solution of the triketone $11(20.7 \mathrm{~g}$, as a 100 mmol$)$, $\mathrm{L}-\beta-$ phenylalanine ($16.5 \mathrm{~g}, 100 \mathrm{mmol}$) and D-camphorsulfonic acid $(11.6 \mathrm{~g}, 50 \mathrm{mmol})$ in acetonitrile $(350 \mathrm{ml})$ was stirred at room temperature under a nitrogen atmosphere overnight. Then the
mixture was heated at $30^{\circ} \mathrm{C}$ for 24 h , and the temperature was raised in $10^{\circ} \mathrm{C}$ intervals in every 24 h during 4 days. After the mixture was stirred at $70^{\circ} \mathrm{C}$ for 19.5 h , the solvent was evaporated in vacuo and the residue was diluted with ethyl acetate. The organic layer was washed with water and brine. The aqueous layer was extracted with ethyl acetate six times. The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by flash column chromatography (eluent ethyl acetate-n-hexane $=1: 2$) of the residue afforded diketone $10(17.6 \mathrm{~g}$, 99% for 2 steps) as a brown viscous oil which crystallised in n -hexane-diethyl ether at $-78{ }^{\circ} \mathrm{C}$. Recrystallization from diethyl ether at $-30^{\circ} \mathrm{C}$ gave pale yellow needles $(7.97 \mathrm{~g}, 45 \%)$ which had mp 35.5-36.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+297$ (c 1.03, benzene); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 2955,2932,1748,1659,1449,1354,1117,1082$ and $1007 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}, J 13.0$, $7.0,1 \mathrm{H}), 2.05(\mathrm{dd}, J 4.6,2.8,2 \mathrm{H})$ and $2.35-3.10(\mathrm{~m}, 6 \mathrm{H})$.

An enantiomeric excess was obtained by GLC analysis on a chiral stationary phase (Cyclodextrine- $\beta-236 \mathrm{M}-19$).

(1S,7aS)-(+)-1-Hydroxy-4,7a-dimethyl-2,3,7,7a-tetrahydro1 H -indene-5(6H)-one 12

To a stirred solution of the diketone $10(1.03 \mathrm{~g}, 5.76 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$ was added sodium borohydride $(59 \mathrm{mg}$, 1.57 mmol) at $-25^{\circ} \mathrm{C}$. After being stirred for 50 min at this temperature, the reaction was quenched by the addition of brine and the aqueous layer was extracted with ethyl acetate three times. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by flash column chromatography (eluent ethyl acetate-n-hexane $=1: 1$) of the residue provided alcohol $\mathbf{1 2}(1.11 \mathrm{~g}$, 100%) as a pale yellow viscous oil which had $[\alpha]_{\mathrm{D}}^{20}+58.2$ (c 1.03); $v_{\max } / \mathrm{cm}^{-1} 3424,2969,1659,1449,1354,1210,1159$, $1100,1074,1046$ and $787 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.62$ $(\mathrm{s}, 3 \mathrm{H}), 1.70-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.45(\mathrm{~m}$, $2 \mathrm{H}), 2.54-2.61(\mathrm{~m}, 2 \mathrm{H})$ and $3.82(\mathrm{dd}, J 10.6,7.3,1 \mathrm{H})$.

(1S,7aS)-(+)-1-p-Bromobenzoyloxy-4,7a-dimethyl-2,3,7,7a-tetrahydro- $1 H$-indene- $5(6 H)$-one 14

A mixture of the alcohol $12(76 \mathrm{mg}, 0.421 \mathrm{mmol})$, p-bromobenzoyl chloride ($228 \mathrm{mg}, 1.26 \mathrm{mmol}$) and DMAP $(27 \mathrm{mg}$, 0.224 mmol) in anhydrous pyridine (4 ml) was stirred at room temperature for 14.5 h under a nitrogen atmosphere. After addition of water, the resulting solution was extracted with ethyl acetate three times, and the combined organic layer was washed with water three times and brine twice and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by purification of the residue by MPLC (eluent ethyl acetate-n-hexane $=1: 3$) provided benzoate $14(151 \mathrm{mg}, 99 \%)$ which had UV (EtOH) $\lambda_{\text {max }} 246.5 \mathrm{~nm}(\varepsilon 15,072) ; \mathrm{CD}(\mathrm{EtOH}) \lambda_{\text {ext }}$ $255 \mathrm{~nm}(\Delta \varepsilon+21.9)$ and $203(-37.4) ; v_{\max } / \mathrm{cm}^{-1} 3042,2944,1721$, $1657,1591,1485,1271,1119,1017$ and $851 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.85-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.81(\mathrm{~m}, 5 \mathrm{H}), 5.04$ $(\mathrm{dd}, J 10.2,7.2,1 \mathrm{H}), 7.60(\mathrm{~d}, J 8.7,2 \mathrm{H})$ and $7.91(\mathrm{~d}, J 8.7,2 \mathrm{H})$; $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 10.86(\mathrm{q}), 16.98(\mathrm{q}), 25.81(\mathrm{t}), 26.63(\mathrm{t}), 33.08(\mathrm{t})$, 34.10 (t), 44.79 (s$), 81.99$ (d), 128.28 (s), 128.85 (s), 129.41 (s$)$, $131.03(\mathrm{~d} \times 2), 131.77(\mathrm{~d} \times 2), 165.26(\mathrm{~s}), 165.33(\mathrm{~s}), 198.16(\mathrm{~s})$.
($1 S, 7 \mathrm{a} S$)-(+)-4,7a-Dimethyl-1-(1,1,2,2-tetramethyl-1-silapropoxy)-2,3,7,7a-tetrahydro- 1 H -indene- $5(6 \mathrm{H})$-one 13
To a stirred solution of the alcohol $\mathbf{1 2}(2.88 \mathrm{~g}, 16.0 \mathrm{mmol})$ in DMF (22 ml) was successively added imidazole (2.80 g , 41.1 mmol), DMAP ($196.4 \mathrm{mg}, 1.61 \mathrm{mmol}$) and TBDMSCl $(4.84 \mathrm{~g}, 32.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred at room temperature overnight, the reaction was quenched by addition of aq. ammonium chloride and the aqueous layer was extracted with ethyl acetate three times. The organic layer was washed with water and brine and dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent in vacuo, the residue was purified by flash column chromatography (eluent ethyl acetate- n-hexane $=1: 30$ then $1: 10$) and subsequent MPLC (eluent ethyl acetate- n-hexane $=1: 10$) provided ether $\mathbf{1 3}(4.12 \mathrm{~g}, 98 \%)$ as a pale yellow viscous oil which had $[a]_{\mathrm{D}}^{20}+32.8$ (c 1.02); $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 2957, 1667, 1465, 1379, $1255,1125,1030$ and $899 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.69-2.57(\mathrm{~m}, 8 \mathrm{H})$ and $3.72(\mathrm{dd}, J 10.3,7.3,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})-4.9(\mathrm{q}),-4.5(\mathrm{q})$, $10.6(\mathrm{q}), 15.3(\mathrm{q}), 17.9(\mathrm{~s}), 25.7(\mathrm{q} \times 3$ and t$), 29.9(\mathrm{t}), 33.3(\mathrm{t})$, 43.2 (t), $45.3(\mathrm{~s}), 81.0(\mathrm{~d}), 128.6(\mathrm{~s}), 167.7(\mathrm{~s})$ and $198.6(\mathrm{~s})$ (Found: C, $69.08 ; \mathrm{H}, 10.15 \%$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.33$; H, 10.2\%).

(1S,7aS)-(+)-4,4,7a-Trimethyl-1-(1,1,2,2-tetramethyl-1-silapropoxy)-1,2,4,6,7,7a-hexahydro-5H-inden-5-one 15

To a stirred solution of the ether $\mathbf{1 3}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ in absolute tert-butanol (2-methylpropan-2-ol) (t - BuOH) (2 ml) was added potassium tert-butoxide (t-BuOK) ($95 \mathrm{mg}, 0.85$ mmol) at ambient temperature under a nitrogen atmosphere. The resulting solution was heated at reflux temperature for 30 min and then iodomethane (MeI) ($106 \mu \mathrm{l}, 1.7 \mathrm{mmol}$) was added. After being stirred for 1 h at the same temperature, additional MeI ($53 \mu \mathrm{l}, 0.85 \mathrm{mmol}$) was added and stirring was continued for 1 h . Removal of the solvent in vacuo followed by purification of the residue by MPLC (eluent ethyl acetate-n-hexane $=1: 10)$ afforded the recovered ether $13(5 \mathrm{mg}, 11 \%)$ and ketone $15(34 \mathrm{mg}, 65 \%)$ as a colorless oil which had $[a]_{\mathrm{D}}^{20}$ +48.5 (c 1.10); $v_{\text {max }} / \mathrm{cm}^{-1} 3072,2959,1715,1462,1240,1125$, 1042 and $905 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.50$ (m, 2H), 2.52-2.69 (ddd, $J 15.2,10.3,5.5,1 \mathrm{H}$), 3.91 (dd, $J 8.8$, $7.6,1 \mathrm{H})$ and $5.40(\mathrm{dd}, J 3.3,2.0,1 \mathrm{H}) ; \delta_{\mathrm{C}}-4.9(\mathrm{q}),-4.4(\mathrm{q}), 17.6$ (q), 18.0 (s), 23.7 (q), $25.8(\mathrm{q} \times 3), 28.0(\mathrm{q}), 33.9(\mathrm{t}), 35.0(\mathrm{t}), 37.9$ (t), 46.8 (s), 48.3 (s), 81.5 (d), 119.7 (d), 154.2 (s) and 215.1 (s) (Found: C, 70.14, $\mathrm{H}, 10.43 \%$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: C, 70.07; H, 10.45\%).

(1S,5S,7aS)-(-)-4,4,7a-Trimethyl-1-(1,1,2,2-tetramethyl-1-silapropoxy)-1,2,4,6,7,7a-hexahydro-5H-inden-5-ol 16

To a stirred solution of the ketone $\mathbf{1 5}(1.84 \mathrm{~g}, 5.97 \mathrm{mmol})$ in diethyl ether (35 ml) was added LAH ($228 \mathrm{mg}, 6.02 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred for 30 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched by careful addition of aq. ammonium chloride. The resulting solution was passed through a short silica gel column with the aid of ethyl acetate. Evaporation of the solvent in vacuo gave alcohol 16 $(1.83 \mathrm{~g}, 98 \%)$ as white needles which had $\mathrm{mp} 86.0-87.5^{\circ} \mathrm{C}$ (from n-hexane); $[a]_{\mathrm{D}}^{20}-4.2$ (c 0.996); $v_{\max } / \mathrm{cm}^{-1} 3505,3072$, 2959, 1552, 1471, 1360, 1250, 1121, 1067 and 1040; $\delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, 1.35-1.90 (m, 5H), 2.12 (ddd, J 14.9, 9.2, 1.7, 1H), 2.30 (ddd, $J 14.9,7.4,3.3,1 \mathrm{H}), 3.26$ (dd, $J 10.6,4.4,1 \mathrm{H}$), 3.78 (dd, $J 9.2$, $7.4,1 \mathrm{H}), 5.32(\mathrm{dd}, J 3.3,1.7,1 \mathrm{H}) ; \delta_{\mathrm{C}}-4.8(\mathrm{q}),-4.4(\mathrm{q}), 17.7$ (q), $18.1(\mathrm{~s}), 21.4(\mathrm{q}), 25.6(\mathrm{q} \times 3), 25.9(\mathrm{q}), 27.9(\mathrm{t}), 37.3(\mathrm{t})$, $38.2(\mathrm{t}), 39.5(\mathrm{~s}), 47.0(\mathrm{~s}), 78.0(\mathrm{~d}), 83.8(\mathrm{~d}), 118.5(\mathrm{~d})$ and 155.9 (s) (Found: C, 69.84; H, 11.04\%. Calc. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}$, 69.62; H, 11.04\%).
[(1S,5S,7aS)-4,4,7a-Trimethyl-1-(1,1,2,2-tetramethyl-1-silapropoxy)-1,2,4,6,7,7a-hexahydro-5H-inden-5-yl)oxy]methylthiomethane-1-thione 17
To a stirred solution of the alcohol $\mathbf{1 6}(156 \mathrm{mg}, 0.514 \mathrm{mmol})$ in THF (4.5 ml) was added $n-\operatorname{BuLi}(700 \mu \mathrm{l}, 1.06 \mathrm{mmol}, 1.52 \mathrm{M}$ solution in n-hexane) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 40 min , carbon disulfide ($240 \mu 1,4.00 \mathrm{mmol}$) was added. The resulting solution was stirred for 1.5 h and then $\operatorname{MeI}(170 \mu 1,2.78 \mathrm{mmol})$ was added. After being stirred for 1.5 h , the reaction was
quenched by addition of aq. ammonium chloride. The aqueous layer was extracted with ethyl acetate five times, and the combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by MPLC (eluent ethyl acetate- n-hexane $=1: 20$) of the residue provided xanthate $\mathbf{1 7}(236 \mathrm{mg})$ as a reddish oil which had $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2996,2857,1462,1258,1123$ and 1062; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~s}$, $3 \mathrm{H}), 1.71-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.16$ (ddd, $J 15.0,9.1,1.7,1 \mathrm{H}), 2.30$ (ddd, $J 15.0,7.4,3.3,1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 3.83$ (dd, $J 9.1,7.4,1 \mathrm{H}$), $5.32(\mathrm{dd}, J 11.0,4.8,1 \mathrm{H})$ and $5.40(\mathrm{dd}, J 3.3,1.7,1 \mathrm{H}) ; \delta_{\mathrm{C}}-4.8$ (q), -4.4 (q), 17.7 (q), 18.1 (s), 18.7 (q), 23.4 (t), 23.5 (q), 25.5 (q), $25.8(\mathrm{q} \times 3$), 36.6 (t , 38.1 (t), 39.4 (s$), 46.9(\mathrm{~s}), 83.6$ (d), 89.6 (d), 119.5 (d), 154.5 (s) and 215.6 (s) (Found: C, 59.84; H, 8.98%. Calc. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}: \mathrm{C}, 70.07 ; \mathrm{H}, 10.45 \%$).

[(1S,7aS)-(-)-4,4,7a-Trimethyl(2,4,5,6,7,7a-hexahydroindenyloxy)]-1,1,2,2-tetramethyl-1-silapropane 18

A solution of the xanthate $\mathbf{1 7}(234 \mathrm{mg}, 0.514 \mathrm{mmol})$, tributyltin hydride ($315 \mu \mathrm{l}, 1.33 \mathrm{mmol}$) and AIBN ($11 \mathrm{mg}, 0.06 \mathrm{mmol}$) in toluene (4 ml) was heated at reflux for 8 min . After being cooled to room temperature, the resulting solution was passed through a silica gel column (eluent n-hexane involving a small amount of triethylamine). Evaporation of the solvent followed by MPLC (eluent n-hexane) of the residue provided olefin 18 ($225.3 \mathrm{mg}, 92 \%$) as a colorless oil which had $[a]_{\mathrm{D}}^{20}-4.4$ (c 0.318); $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 3075, 2959, 1462, 1363, 1256, 1121, 1038 and $885 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.06$ ($\mathrm{s}, 3 \mathrm{H}$), 1.07 ($\mathrm{s}, 3 \mathrm{H}$), 1.10-1.89 (m, 6H), 2.06 (ddd, J 14.5, 9.4, $1.8,1 \mathrm{H}), 2.22$ (ddd, $J 14.5,7.6,3.3,1 \mathrm{H}$) and 5.23 (dd, $J 3.3,1.7$, $1 \mathrm{H}) ; \delta_{\mathrm{C}}-4.7(\mathrm{q}),-4.4(\mathrm{q}), 17.6(\mathrm{q}), 18.2(\mathrm{~s}), 19.2(\mathrm{t}), 25.9$ $(\mathrm{q} \times 3), 28.7(\mathrm{q}), 30.5(\mathrm{q}), 34.0(\mathrm{~s}), 37.1(\mathrm{t}), 39.9(\mathrm{t}), 40.8(\mathrm{t}), 47.1$ (s), 84.1 (d), 116.1 (d) and 156.5 (s) (Found: C, 73.35; H, 11.56%. Calc. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSi}$: C, $73.40 ; \mathrm{H}, 11.63 \%$).

($1 S, 6 R, 7 R, 9 S)$-(+)-1,5,5-Trimethyl-9-(1,1,2,2-tetramethyl-1-silapropoxy)bicyclo[4.3.0]nonan-7-ol 19 and ($1 S, 6 S, 7 S, 9 S$)-(+)-1,5,5-trimethyl-9-(1,1,2,2-tetramethyl-1-silapropoxy)bicyclo-[4.3.0]nonan-7-ol 20

To a stirred solution of the olefin $\mathbf{1 8}(1.22 \mathrm{~g}, 4.16 \mathrm{mmol})$ in THF (20 ml) was added borane-tetrahydrofuran complex (12.5 ml , $12.5 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) at room temperature under a nitrogen atmosphere. After being stirred for 2.5 h , the solution was heated at reflux for 5.5 h and 3 M aq. sodium hydroxide $(28.0 \mathrm{ml}, 84.0 \mathrm{mmol})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(9.4 \mathrm{ml}, 83.1 \mathrm{mmol})$ were added at room temperature. After being stirred overnight, products were extracted with ethyl acetate twice and the combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by flash column chromatography (eluent ethyl acetate-n-hexane $=1: 10$) of the residue afforded the alcohols $(1.08 \mathrm{~g}$, $84 \%, \mathbf{1 9 - 2 0}=1: 1.9)$. Analytical samples were obtained by MPLC (eluent ethyl acetate- n-hexane $=1: 7$) to give $c i s$-fused β-alcohol 19 as an oil and trans-fused α-alcohol 20 as white needles in the order of elution.

The β-alcohol 19 had $[\alpha]_{\mathrm{D}}^{20}+18.8(c 0.128) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 3430, 2932, 1474, 1462, 1389, 1362, 1258, 1080 and 993; δ_{H} (200 MHz) 0.05 ($\mathrm{s}, 3 \mathrm{H}$), $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.91$ (s, 9H), 1.03 (s, 6H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.58(\mathrm{~m}, 8 \mathrm{H}), 2.44$ (ddd, $J 15.3,8.8,4.5,1 \mathrm{H})$, $3.52(\mathrm{~d}, J 4.5,1 \mathrm{H})$ and $4.12(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}-4.9(\mathrm{q}),-4.4(\mathrm{q}), 18.1$ (s), $18.4(\mathrm{t}), 23.8(\mathrm{q}), 25.9(\mathrm{q} \times 3), 29.8(\mathrm{q}), 30.8(\mathrm{q}), 31.1(\mathrm{~s}), 32.5$ (t), $36.1(\mathrm{t}), 40.7(\mathrm{~s}), 42.7(\mathrm{t}), 81.5(\mathrm{~d}), 62.4(\mathrm{~d}), 72.5(\mathrm{~d})$ and 83.1 (d) (Found: C, 69.10; H, 11.61\%. Calc. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$: C, 69.17; H, 11.61\%).

The α-alcohol 20 had $[a]_{\mathrm{D}}^{20}+51.1$ ($c 0.558$); $\mathrm{mp} 92.0-92.5^{\circ} \mathrm{C}$ (from n-hexane); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3440,2955,1475,1462$, 1389, 1261, 1119, 1071 and $1028 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.002(\mathrm{~s}, 6 \mathrm{H})$, $0.80(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{ddd}$,
$J 13.9,8.7,3.2,1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J 8.7,8.7,1 \mathrm{H})$ and 4.23 (ddd, $J 9.6,9.6,3.2,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})-4.8(\mathrm{q}),-4.5(\mathrm{q})$, 13.8 (q), 19.4 (t), 21.6 (q), $25.8(\mathrm{q}), 33.9(\mathrm{q}), 38.0(\mathrm{t}), 42.0(\mathrm{t})$, 42.4 (t), 60.4 (d), 70.7 (d) and 79.5 (d) (Found: C, 69.24; $\mathrm{H}, 11.65 \%$. Calc. for $\left.\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.17 ; \mathrm{H}, 11.61 \%\right)$.

(1R,6R,9S)-(+)-1,5,5-Trimethyl-9-(1,1,2,2-tetramethyl-1-silapropoxy)bicyclo[4.3.0]nonan-7-one 21

To a stirred mixture of the alcohol 19 ($94 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $4 \AA$ molecular sieves (100 mg) in DCM (4 ml) was added PCC ($102 \mathrm{mg}, 0.464 \mathrm{mmol}$) and the resulting slurry was stirred at room temperature for 9 h . The mixture was diluted with ethyl acetate and passed through a short silica gel column. The resulting organic layer was washed with water twice and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent in vacuo, the residue was chromatographed on a short silica gel column to afford ketone $\mathbf{2 1}(92 \mathrm{mg}, 98 \%)$ as white needles which had $[a]_{\mathrm{D}}^{20}+16.4$ (c 0.554); mp 36.5-37.0 ${ }^{\circ} \mathrm{C}$ (from n-hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 2955,1740,1475,1462,1256,1149,1105$ and $1009 ; \delta_{\mathrm{H}}$ $(200 \mathrm{MHz}) 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$, $0.93(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.04-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.80(\mathrm{~d}, J 2.0,1 \mathrm{H})$, 2.18 (ddd, $J 19.3,7.7,2.0,1 \mathrm{H}), 2.55$ (dd, $J 19.3,7.7,1 \mathrm{H})$ and $4.31(\mathrm{dd}, J 7.7,7.7,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})-5.0(\mathrm{q}),-4.5(\mathrm{q})$, $18.0(\mathrm{t}$ and s), $24.7(\mathrm{q}), 24.9(\mathrm{q}), 25.8(\mathrm{q} \times 3), 32.0(\mathrm{t}), 32.3(\mathrm{q})$, $32.4(\mathrm{~s}), 39.5(\mathrm{t}), 43.8(\mathrm{~s}), 45.8(\mathrm{t}), 64.8(\mathrm{~d}), 71.3(\mathrm{~d})$ and $218.3(\mathrm{~s})$ (Found: C, $69.65 ; \mathrm{H}, 11.09 \%$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.62$; H, 11.04\%)

(1R,6S,9S)-(+)-1,5,5-Trimethyl-9-(1,1,2,2-tetramethyl-1-silapropoxy)bicyclo[4.3.0]nonan-7-one 22

To a stirred mixture of the alcohol $\mathbf{2 0}(117 \mathrm{mg}, 0.374 \mathrm{mmol})$ and $4 \AA$ molecular sieves $(125 \mathrm{mg})$ in $\mathrm{DCM}(4 \mathrm{ml})$ was added PCC ($126 \mathrm{mg}, 0.561 \mathrm{mmol}$) and stirring was continued for 4 h at room temperature. The mixture was diluted with ethyl acetate and passed through a short silica gel column. The organic layer was washed with water twice and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent in vacuo, the residue was chromatographed on a short silica gel column to afford ketone $22(104 \mathrm{mg}, 89 \%)$ as white needles which had $[a]_{\mathrm{D}}^{20}+120.9$ (c 0.412); $\mathrm{mp} 83.5-84.5^{\circ} \mathrm{C}$ (from n-hexane); $v_{\max } /$ $\mathrm{cm}^{-1} 2951,1743,1475,1462,1387,1258,1140$ and $1030 ; \delta_{\mathrm{H}}$ $(200 \mathrm{MHz}) 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$, $1.03(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.84$ (ddd, $J 12.4$, $3.2,3.2,1 \mathrm{H}$), 1.97 (dd, $J 18.6,8.2,1 \mathrm{H}$), 2.41 (ddd, $J 18.6,8.2$, $1.0,1 \mathrm{H})$ and $3.83(\mathrm{dd}, J 8.2,8.2,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})-4.9(\mathrm{q})$, -4.5 (q), 13.6 (q), 18.1 (s), 19.2 (t), 21.5 (q), $25.8(\mathrm{q} \times 8$), 32.1 (q), 32.3 (s), 37.6 (t), 41.9 (t), 44.1 (t), 44.2 (s$), 66.2$ (d), 76.8 (d) and 211.8 (s) (Found: C, 69.82; H, 11.10\%. Calc. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.62 ; \mathrm{H}, 11.04 \%$).

(3aS,7aR)-(-)-3a,7,7-Trimethyl-3a,4,5,6,7,7a-hexahydroinden-1-one 24

From the ketone 21. To a stirred solution of the ketone 21 ($91 \mathrm{mg}, 0.293 \mathrm{mmol}$) in absolute $t-\mathrm{BuOH}(4 \mathrm{ml})$ was added DBU ($180 \mu \mathrm{l}, 1.20 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. The resulting solution was heated at reflux temperature overnight and then passed through a short silica gel column. Evaporation of the solvent in vacuo followed by column chromatography (eluent ethyl acetate- n-hexane $=1: 5$) of the residue gave enone $\mathbf{2 4}(47 \mathrm{mg}, 90 \%)$ as white crystals which had $[a]_{\mathrm{D}}^{20}-85.2$ (c 1.038); mp 30.5-32.0 ${ }^{\circ} \mathrm{C}$ (from n-hexane); $v_{\max } / \mathrm{cm}^{-1} 3081,2967,1712,1597,1465,1377,1265,1147$ and 953 ; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.22-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J 5.7,1 \mathrm{H})$ and $7.38(\mathrm{~d}$, $J 5.7,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 17.4(\mathrm{t}), 24.7(\mathrm{q}), 29.0(\mathrm{q}), 31.6(\mathrm{t}), 32.8$ (q), $35.9(\mathrm{t}), 61.8(\mathrm{~d}), 131.6(\mathrm{~d})$ and 172.3 (d).

From the ketone 22. To a stirred solution of the ketone 22 $(106 \mathrm{mg}, 0.340 \mathrm{mmol})$ in absolute $t-\mathrm{BuOH}(4.5 \mathrm{ml})$ was added

DBU ($160 \mu \mathrm{l}, 1.07 \mathrm{mmol})$ at room temperature under a nitrogen atmosphere. The resulting solution was heated at reflux temperature overnight and then passed through a short silica gel column. Evaporation of the solvent in vacuo followed by MPLC purification (eluent ethyl acetate $-n$-hexane $=1: 5$) of the residue afforded enone $\mathbf{2 4}(54 \mathrm{mg}, 88 \%)$ as white crystals.

(3aR,7aR)-(-)-3a,7,7-Trimethyl-7a-prop-2-enyl-3a,4,5,6,7,7a-hexahydro- $1 H$-inden-1-one 26

To a suspension of potassium hydride ($133 \mathrm{mg}, 9.95 \mathrm{mmol}, 30 \%$ in mineral oil, washed with n-hexane twice) in THF was added a solution of the enone $\mathbf{2 4}$ ($585 \mathrm{mg}, 3.28 \mathrm{mmol}$) in THF (3 ml) at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred for 30 min , allyl bromide ($1.75 \mathrm{ml}, 20.1 \mathrm{mmol}$) was added to the reaction mixture which was stirred at $0^{\circ} \mathrm{C}$ for 2 h , room temperature for 2 h and at $45-50^{\circ} \mathrm{C}$ for 5 h . Then, toluene (40 ml) was added to the resulting mixture and stirring was continued at reflux temperature for 12 h . After evaporation of the solvent in vacuo, the residue was purified by MPLC (eluent ethyl acetate $-n$-hexane $=1: 7$) to afford enone $26(689 \mathrm{mg}, 96 \%)$ as a colorless oil which had $[a]_{\mathrm{D}}^{20}-25.3$ (c 0.198); $v_{\max } / \mathrm{cm}^{-1} 3081$, 2944, 1712, 1638, 1601, 1462, 1392, 1163, 1117 and 993; δ_{H} (500 MHz) $1.10(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.65-$ $1.92(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 4.90-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.77$ (dddd, $J 17.0,10.0,7.1,7.1,1 \mathrm{H}), 5.97(\mathrm{~d}, J 5.7,1 \mathrm{H})$ and $7.20(\mathrm{~d}, J 5.7$, $1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 17.31(\mathrm{t}), 25.32(\mathrm{q}), 27.74(\mathrm{q}), 28.95(\mathrm{q}), 35.35$ $(\mathrm{t}), 35.87(\mathrm{t}), 36.38(\mathrm{t}), 36.64(\mathrm{~s}), 49.14(\mathrm{~s}), 58.58(\mathrm{~s}), 116.61(\mathrm{t})$, 131.19 (d), 136.85 (d), 170.59 (d) and 213.83 (s) (Found: C, $82.25 ; \mathrm{H}, 10.22 \%$. Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 82.52 ; \mathrm{H}, 10.16 \%\right)$.

2-[(3aR,7aR)-(-)-3a,7,7-Trimethyl-1-oxo-3a,4,5,6,7,7a-hexahydro- $1 H$-inden-7a-yl]ethanal 27

To a stirred solution of the enone $\mathbf{2 6}(731 \mathrm{mg}, 3.35 \mathrm{mmol})$ in $t-\mathrm{BuOH}(100 \mathrm{ml})$ and water (50 ml) was successively added osmium tetraoxide ($14 \mathrm{mg}, 0.0537 \mathrm{mmol}$) and sodium periodate $(3.58 \mathrm{~g}, 16.7 \mathrm{mmol})$ at room temperature. After being stirred for 3 h , the reaction mixture was poured into water. The resulting mixture was extracted with ethyl acetate twice. The organic layer was washed with aq. sodium hydrogencarbonate, water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by MPLC purification (eluent ethyl acetate $-n$-hexane $=1: 5$) of the residue afforded aldehyde 27 ($599 \mathrm{mg}, 81 \%$) as a viscous oil which had $[a]_{\mathrm{D}}^{20}-10.7$ (c 1.238); $v_{\max } / \mathrm{cm}^{-1} 2946,2743,1721,1709,1599,1470,1391$, $1369,1230,1159,1071$ and $908 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.08$ (s, 3H), $1.11(\mathrm{~s}, 3 \mathrm{H}), 1.20-2.05(\mathrm{~m}, 6 \mathrm{H}), 2.67$ (dd, $J 16.6,3.3$, $1 \mathrm{H}), 2.78(\mathrm{dd}, J 16.6,2.0,1 \mathrm{H}), 6.14(\mathrm{~d}, J 5.8,1 \mathrm{H}), 7.38(\mathrm{~d}, J 5.8$, $1 \mathrm{H})$ and 9.73 (dd, $J 3.3,2.0,1 \mathrm{H})$.

($1 R, 6 R, 7 S, 11 S$)-(-)-11-Hydroxy-2,2,6-trimethyltricyclo[5.2.2.0 ${ }^{1,6}$]undecan-9-one 30 and ($1 R, 6 R, 7 S, 11 R$)-(-)-11-hydroxy-2,2,6-trimethyltricyclo[5.2.2.0 ${ }^{1,6]}$ undecan-9-one 31

To a stirred solution of the aldehyde $27(230 \mathrm{mg}, 1.04 \mathrm{mmol})$, absolute t - $\mathrm{BuOH}(121 \mu \mathrm{l}, 1.25 \mathrm{mmol}$) and HMPA (4.0 ml) in THF (40 ml) was added $\mathrm{SmI}_{2}(31.3 \mathrm{ml}, 3.13 \mathrm{mmol}, 0.1 \mathrm{M}$ solution in THF) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred for 15 min , the reaction was quenched by addition of N, N^{\prime}-dimethylaminoethanol (4 ml) and silica gel, and stirring was continued for 1 h at room temperature. The reaction mixture was passed through a short silica gel column. Evaporation of the solvent in vacuo followed by MPLC (eluent ethyl acetate $-n$-hexane $=3: 2$) purification of the residue afforded tricyclic alcohol $31(44 \mathrm{mg}, 19 \%)$ as white needles and isomeric tricyclic alcohol $\mathbf{3 0}(101 \mathrm{mg}, 43 \%)$ as white needles in the order of elution.
The alcohol 31 had mp $111-113{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{20}-32.2$ (c 0.460); $v_{\text {max }} / \mathrm{cm}^{-1} 3630,3465,2947,2870,1744,1468,1227,1080,1029$ and $995 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$,
$1.05-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.71$ $(\mathrm{m}, 3 \mathrm{H}), 2.04$ (dd, $J 4.5,4.5,1 \mathrm{H}), 2.20$ (dddd, $J 18.5,4.9,0.8$, $0.8,1 \mathrm{H}), 2.39(\mathrm{dd}, J 14.0,10.0,1 \mathrm{H}), 2.58(\mathrm{~d}, J 18.5,1 \mathrm{H})$ and $4.67(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 18.4,21.4,24.2,26.2,30.6,32.8$, 32.9, 34.9, 35.8, 48.6, 49.2, 64.1, 70.2 and 218.7 (Found: $\mathrm{C}, 75.44 ; \mathrm{H}, 10.10 \%$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$: C, $75.63 ; \mathrm{H}, 9.97 \%$).

The alcohol 30 had mp 117-120 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{20}-28.3$ (c 0.512); $v_{\max } / \mathrm{cm}^{-1} 3627,3011,2870,1744,1433,1073,1040$ and $970 ;$ $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.35$ (s, 3H), 1.43 (br d, $J 13.5,1 \mathrm{H}), 1.48$ (br d, $J 13.5,1 \mathrm{H}$), 1.54 (d, $J 18.5,1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.82$ (dd, $J 14.0,7.2,1 \mathrm{H}), 1.87$ (dd, $J 14.0,3.5,1 \mathrm{H}$), 2.01 (br d, $J 5.1,1 \mathrm{H}$), 2.24 (br s, 1H), 2.35 (ddd, $J 18.5,5.1,0.9,1 \mathrm{H})$ and $4.01(\mathrm{dd}, J 7.2,3.5,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz})$ 18.4, 21.9, 24.7, 26.4, 31.3, 32.4, 33.2, 35.8, 40.2, 48.1, 49.8, 64.1, 75.7 and 218.8 (Found: C, 75.49 ; H, 10.06%. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{C}, 75.63 ; \mathrm{H}, 9.97 \%\right)$.

($1 R, 6 R, 7 S, 11 R)$-2,2,6-Trimethyl-11-(1,1,2,2-tetramethyl-1silapropoxy)tricyclo[5.2.2.0 ${ }^{1,6}$]undecan-9-one 32

To a stirred solution of the alcohol $30(26 \mathrm{mg}, 0.116 \mathrm{mmol})$ in DMF (2 ml) was successively added imidazole (16 mg , 0.239 mmol), a catalytic amount of DMAP and TBDMSCl ($54 \mathrm{mg}, 0.359 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. After being stirred overnight, the reaction was quenched by addition of aq. ammonium chloride and the aqueous layer was extracted with ethyl acetate four times. The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by column chromatography (eluent ethyl acetate $-n$-hexane $=1: 10$) of the residue provided TBDMS ether $32(37 \mathrm{mg}, 94 \%)$ as a colorless oil which had $[a]_{\mathrm{D}}^{20}+3.2$ (c 1.046); $v_{\text {max }} / \mathrm{cm}^{-1} 2960,2861,1734,1460,1260,1159$ and 1015; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.20$ (s, 3H), $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.96(\mathrm{~m}, 10 \mathrm{H}), 2.34$ (dd, $J 18.4,5.3$, $1 \mathrm{H})$ and $3.87(\mathrm{dd}, J 6.4,4.2,1 \mathrm{H}) ; m / z 336\left(\mathrm{M}^{+}, 26 \%\right), 279$ (100), 251 (11), 211 (14), 187 (13), 161 (23), 123 (12), 75 (52) and 41 (15) (Found: $\mathrm{M}^{+}, 336.2533$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}$: M^{+}, 336.2484).

($1 R, 6 R, 7 S, 8 R S, 11 R)-2,2,6,8-T e t r a m e t h y l-11-(1,1,2,2-t e t r a-~$ methyl-1-silapropoxy)tricyclo[5.2.2.0 ${ }^{1,6}$]undecan-9-one 33

To a stirred solution of hexamethyldisilazane ($118 \mu \mathrm{l}, 0.562$ $\mathrm{mmol})$ in THF $(1.5 \mathrm{ml})$ was added a solution of $n-\operatorname{BuLi}(317 \mu \mathrm{l}$, $0.499 \mathrm{mmol}, 1.58 \mathrm{M}$ solution in n-hexane) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred for 20 min , a solution of the ketone $32(42 \mathrm{mg}, 0.125 \mathrm{mmol})$ in THF $(2.0 \mathrm{ml})$ was added and the resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$. MeI $(23 \mu \mathrm{l}$, 0.374 mmol) was added and stirring was continued for 35 min . The reaction was quenched by addition of aq. ammonium chloride and the aqueous layer was extracted with ethyl acetate twice. The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by purification of the residue on short silica gel column and MPLC (eluent ethyl acetate- n-hexane $=$ $1: 10)$ provided inseparable mixture of TBDMS ether 33 ($36 \mathrm{mg}, 83 \%$) as a colorless oil which had $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.05$ $(\mathrm{s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 0.3 \mathrm{H}), 1.22(\mathrm{~s}, 0.7 \mathrm{H})$, $1.34(\mathrm{~s}, 0.3 \mathrm{H}), 1.38(\mathrm{~s}, 0.7 \mathrm{H}), 1.00-1.95(\mathrm{~m}, 12.3 \mathrm{H}), 2.55$ $(\mathrm{m}, 0.7 \mathrm{H}), 3.91(\mathrm{~m}, 0.3 \mathrm{H})$ and $4.18(\mathrm{dd}, J 7.3,3.0,0.7 \mathrm{H})$.

($1 R, 6 R, 7 S, 8 R S, 11 R$)-11-Hydroxy-2,2,6,8-tetramethyltricyclo[5.2.2.0 ${ }^{1,6]}$ undecan-9-one 34

To a solution of the TBDMS ether 33 ($36 \mathrm{mg}, 0.104 \mathrm{mmol}$) in THF (2 ml) was added TBAF ($520 \mu \mathrm{l}, 0.520 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) at room temperature under a nitrogen atmosphere. After being stirred for 3 h , the reaction was quenched by addition of aq. ammonium chloride and the aqueous layer was extracted with ethyl acetate twice. The combined organic layer
was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by purification of the residue on a short silica gel column and MPLC (eluent ethyl acetate- n-hexane $=1: 1$) provided alcohol 33 ($22 \mathrm{mg}, 90 \%, \mathbf{3 4 a}-\mathbf{3 4 b}=1: 2.3$) as white crystals.
The exo-methyl alcohol 34 had $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{20}-37.2$ (c 0.344); $v_{\text {max }} / \mathrm{cm}^{-1} 3640,2930,2872,1732,1453$ and 1016; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.05-2.10(\mathrm{~m}, 11 \mathrm{H}), 1.18(3 \mathrm{H}, \mathrm{s})$, 1.25 (d, 3H, J7.1), 1.35 (s, 3H) and 4.30 (dd, $J 6.2,4.3,1 \mathrm{H})$; $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 17.3,18.8,21.8,24.9,26.2,32.2,32.6,33.1,35.4$, 45.3, 48.1, 56.3, 63.7, 77.1 and 221.3; $m / z 236\left(\mathrm{M}^{+}, 22 \%\right), 163$ (74), 123 (100), 95 (38), 69 (30) and 41 (51) (Found: M^{+}, 236.1705. Calc. For $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: M^{+}, 236.1776$).

The endo-methyl alcohol 34b had mp $110-112{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}^{20}-3.4$ (c 0.409); $v_{\text {max }} / \mathrm{cm}^{-1} 3635,2951,2872,1731,1468,1452$ and $1006 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.01$ (d, J 7.2, 3H), 1.05-2.05 $(\mathrm{m}, 10 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{qd}, J 7.2,4.9,1 \mathrm{H})$ and $4.30(\mathrm{dd}, J 7.7,3.4,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 11.4,18.5,22.3$, $24.7,26.5,30.3,33.5,33.9,36.3,41.9,47.6,54.5,64.8,69.3$ and 221.9; m/z 236 ($\mathrm{M}^{+}, 23 \%$), 193 (6), 163 (77), 123 (100), 95 (38) and 41 (51) (Found: $\mathrm{M}^{+}, 236.1744$. Calc. For $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: M^{+}$, 236.1776).

(1R,6R,7S,8S,11R)-2,2,6,11-Tetramethyl-10-oxotricyclo[5.2.2.0 $\left.{ }^{1,6}\right]-8$-undecyl methane sulfonate 35

To a solution of the alcohol $34(9 \mathrm{mg}, 0.038 \mathrm{~mol})$ in DCM $(1 \mathrm{ml})$ was added DMAP $(0.5 \mathrm{mg}, 0.004 \mathrm{~mol})$, triethylamine ($13 \mu \mathrm{l}, 0.094 \mathrm{~mol}$) and methanesulfonyl chloride ($6 \mu \mathrm{l}$, $0.075 \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred at room temperature overnight, the reaction mixture was directly chromatographed on a short silica gel column. After evaporation of solvent, purification of the residue by MPLC (eluent ethyl acetate- n-hexane $=1: 1$) provided mesylate 35 $(9 \mathrm{mg}, 76 \%)$ as a colourless oil which had $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.99$ (s, 3H), $1.20(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J 7.2,3 \mathrm{H}), 1.05-1,85$ $(\mathrm{m}, 7 \mathrm{H}), 2.05-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$ and 4.78 (dd, $J 7.1,3.3,1 \mathrm{H})$; $\delta_{\mathrm{C}}(50 \mathrm{MHz}) 11.3$ (q), 18.3 (t), 21.9 (q), 24.6 (q), $26.4(\mathrm{q}), 29.8(\mathrm{t}), 31.9(\mathrm{t}), 33.5(\mathrm{~s}), 36.0(\mathrm{t}), 38.5(\mathrm{q}), 41.7(\mathrm{~d})$, 47.7 (s), 53.0 (d), 60.3 (s) 78.5 (d) and 219.5 (s).

($1 R, 6 R, 7 S, 8 R, 11 R)-2,2,6,11-T e t r a m e t h y l-10-o x o t r i c y c l o-~$ [5.2.2.0 $\left.{ }^{1,6}\right]-8$-undecyl methanesulfonate $\mathbf{3 5 b}$

To a solution of the alcohol $\mathbf{3 4 b}(23 \mathrm{mg}, 0.098 \mathrm{mmol})$ in DCM $(1 \mathrm{ml})$ was added DMAP ($1.2 \mathrm{mg}, 0.010 \mathrm{~mol}$), triethylamine ($34 \mu \mathrm{l}, 0.244 \mathrm{~mol}$) and methanesulfonyl chloride ($15 \mu \mathrm{l}$, 0.195 mol) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred at room temperature overnight, the reaction mixture was directly chromatographed on a short silica gel column. After evaporation of solvent, purification of the residue by MPLC (eluent ethyl acetate- n-hexane $=1: 1$) provided mesylate 35 ($29 \mathrm{mg}, 94 \%$) as a colorless oil which had $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.98$ (s, 3H), $1.10(\mathrm{~d}, J 7.24,3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.80(\mathrm{~m}, 6 \mathrm{H})$, 1.92 (dd, $J 14.9,8.0,1 \mathrm{H}), 2.21$ (ddd, $J 14.8,3.2,1.3,1 \mathrm{H}$), 2.38 $(\mathrm{d}, J 5.1,1 \mathrm{H}), 2.78(\mathrm{qd}, J 7.3,5.1,1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H})$ and 5.13 (dd, $J 8.0,3.2,1 \mathrm{H}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 17.1(\mathrm{q}), 18.7$ (t), 21.6 (q), 24.8 (q), $26.0(\mathrm{q}), 30.6(\mathrm{q}), 32.0(\mathrm{q}), 33.0(\mathrm{~s}), 35.1(\mathrm{t}), 38.5(\mathrm{q}), 44.6$ (d), 48.2 (s), 54.3 (d), 63.1 (s), 83.4 (d) and 218.8 (s).

($1 R, 6 R, 7 S, 8 R, 11 S)-2,2,6,9-T e t r a m e t h y l t e t r a c y c l o-~$ [6.2.1.0 ${ }^{1,6} .0_{7,9}$]undecan-10-one $=$ (cyclomyltaylan-5-one 36

From the mesylate 35. To a stirred solution of sodium methoxide prepared from $\mathrm{NaH}(4 \mathrm{mg}, 0.086 \mathrm{~mol}, 60 \%$ in mineral oil) in anhydrous ethanol $(0.3 \mathrm{ml})$ was added a solution of the mesylate $35(9 \mathrm{mg}, 0.029 \mathrm{~mol})$ in ethanol $(1 \mathrm{ml})$ at room temperature under a nitrogen atmosphere. After being stirred for 2 h , the reaction was quenched by addition of aq. ammonium chloride and the aqueous layer was extracted with ethyl acetate twice. The combined organic layer was washed with water and
brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuum followed by purification of the residue by MPLC (eluent ethyl acetate- n-hexane $=1: 30$) provided ketone $36(5 \mathrm{mg}, 77 \%)$ as a colorless oil which had $[a]_{\mathrm{D}}^{20}+22.5(c 0.730)$; $v_{\max } / \mathrm{cm}^{-1} 2944,2894,1734,1458,1377,1225,968$ and 885 ; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.83(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.10$ $(\mathrm{s}, 3 \mathrm{H}), 1.10-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.65(\mathrm{~m}, 4 \mathrm{H})$ and 1.70 $1.95(\mathrm{~m}, 4 \mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 8.85,18.78,21.43,25.31,25.47$, $26.78,27.05,28.44,31.30,33,43,35.31,39.17,44.45,55.75$ and 215.98.

From the mesylate 35. To a stirred solution of sodium ethoxide prepared from $\mathrm{NaH}(11 \mathrm{mg}, 0.276 \mathrm{~mol}, 60 \%$ in mineral oil) in anhydrous ethanol (0.5 ml) was added a solution of the mesylate $35(29 \mathrm{mg}, 0.092 \mathrm{~mol})$ in ethanol $(1.5 \mathrm{ml})$ at room temperature under a nitrogen atmosphere. After being stirred for 2.5 h , the reaction was quenched by addition of aq. ammonium chloride and the aqueous layer was extracted with ethyl acetate twice. The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo followed by purification of the residue by MPLC (eluent ethyl acetate $-n$-hexane $=1: 10$) provided ketone 36 ($19 \mathrm{mg}, 93 \%$) as a colorless oil.

($1 R, 6 R, 7 S, 8 R, 11 S$)-2,2,6,9-Tetramethyltetracyclo[6.2.1.0 ${ }^{1,6} .0^{7,9}$] undecan-10-ol $=(+)$-cyclomyltaylan-5a-ol 1

To a solution of the ketone $\mathbf{3 6}(12 \mathrm{mg}, 0.056 \mathrm{~mol})$ in ether (1 ml) was added LAH ($3 \mathrm{mg}, 0.084 \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After being stirred for 30 min , the reaction was quenched by addition of aq. ammonium chloride and the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuum gave the residue which was purified by MPLC (eluent ethyl acetate $-n$-hexane $=1: 5$) to afford (+)-cyclomyltaylan-5 5 -ol $1(10 \mathrm{mg}, 81 \%)$ which had $[a]_{\mathrm{D}}^{20}+32.9(c$ $0.307) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.89-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}$, 5.5), $0.98(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.18(\mathrm{~m}, 1 \mathrm{H})$, $1.22(\mathrm{dd}, J 10.8,1.0,1 \mathrm{H}), 1.32-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{dd}, J 10.8$, $1.0,1 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.60$ (ddddd, $J 13.6,13.6,13,6,4.2,4.2$, 1 H), 1.88 (ddd, J 13.6, 13.6, 4.8, 1H), 1.99 (ddd, J 13.6, 13.6, $4.3,1 \mathrm{H})$ and $3.64(\mathrm{br} \mathrm{d}, J 4.5,1 \mathrm{H}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 12.74(\mathrm{q})$, 17.79 (d), 19.18 (t), 23.16 (q), 23.27 (s), 25.75 (q), 28.00 (t), 29.33 (q), 32.09 (s), 32.57 (t), 34.41 (d), 37.26 (t), 45.30 (s), 51.95 (s) and 86.02 (d).

Acknowledgements

We thank Professor C.-L. Wu, Tamkang University, Taiwan for spectral data of natural cyclomyltaylan- 5α-ol 1 and Professor E. Hasegawa, Department of Chemistry, Faculty of Science, Niigata University for helpful discussions on Sm chemistry.

Thanks are also due to Soda Aromatics Co. for mass spectral measurements.

References

1 For example, J. D. Connolly and R. A. Hill, Dictionary of Terpenoids, Chapman and Hill, London, 1991.
2 (a) D. Takaoka, H. Tami and A. Matsuo, J. Chem. Res. (S), 1988, 130; (b) Y. Asakawa, M. Toyota, A. Ueda, M. Tori and Y. Fukazawa, Phytochemistry, 1991, 30, 3037; (c) C.-L. Wu and S.-J. Chang, Phytochemistry, 1992, 31, 2150; (d) H.-C. Wei, S.-J. Ma and C.-L. Wu, Phytochemistry, 1995, 39, 91.

3 (a) D. Takaoka, A. Matsuo, J. Kuramoto, M. Nakayama and S. Hayashi, J. Chem. Soc., Chem. Commun., 1985, 482; (b) F. Nagashima, S. Momosaki, Y. Watanabe, S. Takaoka, S. Huneck and Y. Asakawa, Phytochemistry, 1996, 42, 1361.

4 H. Sakai, H. Hagiwara, Y. Ito, T. Hoshi, T. Suzuki and M. Ando, Tetrahedron Lett., 1999, 40, 2965
5 Z. G. Hajos and D. R. Parrish, Org. Synth., 1990, Coll. Vol. 7, 363.
6 H. Hagiwara and H. Uda, J. Org. Chem., 1988, 53, 2308.
7 For example, H. Hagiwara, F. Takeuchi, T. Hoshi, T. Suzuki and M. Ando, Tetrahedron Lett., 2001, 42, 7629; H. Hagiwara, H. Nagatomo, F. Yoshii, T. Hoshi, T. Suzuki and M. Ando, J. Chem. Soc., Perkin Trans. 1, 2000, 2645; H. Hagiwara, H. Nagatomo, S. Kazayama, H. Sakai, T. Hoshi, T. Suzuki and M. Ando, J. Chem. Soc., Perkin Trans. 1, 1999, 457.
8 (a) N. Harada and K. Nakanishi, Acc. Chem. Res., 1972, 5, 257; (b) N. Harada and K. Nakanishi, Circular Dichroic SpectroscopyExiton Coupling in Organic Stereochemistry, University Science Books, Mill Valley, CA, 1983; (c) K. Nakanishi and N. Berova, Circular Dichroism, Principles and Applications, ch. 13; K. Nakanishi, N. Berova and R. W. Woody, eds. VCP Publishers, Cambridge, UK, 1994
9 (a) R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A. J. Ives and R. B. Kelly, J. Chem. Soc., 1957, 1131; (b) R. Zurflüh, E. N. Wall, J. B. Siddall and J. A. Edwards, J. Am. Chem. Soc., 1968, 90, 6224.

10 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574; D. H. R. Barton and W. B. Motherwell, Pure Appl. Chem., 1981, 53, 15.
11 G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96, 307 and references therein.
12 (a) E. J. Enholm and A. Trivellas, J. Am. Chem. Soc., 1989, 111, 6463; (b) G. A. Molander and J. A. McKie, J. Org. Chem., 1995, 60, 872.

13 T. Imamoto and M. Ono, Chem. Lett., 1987, 501.
14 (a) J. Inanaga, M. Ichikawa and M. Yamaguchi, Chem. Lett., 1987, 1485; (b) Z. Hou and Y. Wakatsuki, J. Chem. Soc., Chem. Commun., 1994, 1205.
15 H. Lund and M. M. Baizer, Organic Electrochemistry, 3rd edn., Marcel Dekker, Inc, New York, 1991, p. 453.
16 (a) M. Shabangi and R. A. Flowers II, Tetrahedron Lett., 1997, 38, 1137; (b) M. Shabangi, J. M. Sealy, J. R. Fuchs and R. A. Flowers II, Tetrahedron Lett., 1998, 39, 4429.
17 M. Sono, Y. Nakashiba, K. Nakashima and M. Tori, J. Org. Chem., 2000, 65, 3099.
18 (a) A. J. Pearson and X. Fang, J. Org. Chem., 1997, 62, 5287; (b) E. J. Corey, M. A. Tius and J. Das, J. Am. Chem. Soc., 1980, 102, 1742.

